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An analytical approach was developed for rectangular platelet reinforced composites which
could be used for a 3D elastic stress field distribution subjected to an applied axial load.
The ends of the platelet could be bonded to the matrix. Exact displacement solutions were
derived for the matrix/platelet fromtheory of elasticity. These displacement solutions were
then superposed for achieving analytical expressions for the matrix/platelet 3D stress field
components over the entire composite system including the platelet end region, using the
adding imaginary fiber technique. The platelet/matrix components could exactly satisfy
the equilibrium and compatibility conditions and satisfy the equilibrium requirements and
the overall boundary conditions. The obtained analytical results were then validated by
FEM and Shear-lag modeling, and some of discrepancies among the shear-lag models were
resolved. Good agreements were observed between the analytical and numerical predictions.
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1. Introduction

Over the past few decades, a variety of numerical and analytical models has been developed
to investigate different stress transfer problems in composites. These models mainly include
1D models, which are typically based on the shear-lag theory (Agarwal, 1974; Agarwal and
Broutman, 1980; Chang and Tarn, 2011; Cox, 1952; Glavinchevski and Piggott, 1973; Haque
and Ramasetty, 2005; Hsueh, 1994, 2000; Hsueh et al., 1999; Jiang and Peters, 2008; Jiang et
al., 1998; Kim, 1998, 2007, 2008; Kim and Kwac, 2009; Kim and Noh, 2004; Kotha et al., 2000;
Lusis et al., 1973; Narin, 1997, 2004; Narin and Mendels, 2001; Padawer and Beecher, 1970;
Piggott, 1980; Salekin et al., 1992; Taya and Arsenault,1989; Tyson and Davies, 1965; Wu et
al., 1997), 3D analytical models based on axisymmetric analyses (Abedian et al., 2007; Jiang
et al., 1998, 2004; Wu et al., 1997), the Eshelby models based on Eshelby’s equivalent inclusion
method (Arsenault and Taya, 1987; Eshelby, 1957; Tanaka et al., 1973; Lee, 2008; Withers et al.,
1989) and numerical models (Cannilloa et al., 2003; Lusti et al., 2002; Narin, 2007). Due to the
complexity of elasticity field equations, analytical closed-form solutions to fully three-dimensional
problems are very difficult to be obtained. Accordingly, many solutions have been developed for
reduced problems that are typically composed of axisymmetry or one-dimensionality based on
the shear-lag theory for simplifying a particular aspect of the formulation and solution. In
mathematical terms, the shear-lag model is the simplest of all models, which is widely used
for the stress transfer analysis in unidirectional composites. This model is based on a simple
differential equation which relates the fibre axial stress to the interfacial shear stress. It is not
applicable at higher volume fractions due to the significant interactions of fibres. Also, the
model cannot predict changes of axial stress and strain distributions in the radial direction. As
a result, due to these limitations, the shear-lag model cannot provide reliable predictions for the
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composite properties, and thus, its application for short fibre composites has been limited over
time. Most interfacial problems need the detailed distribution of stresses at the interface like
the interface friction slip behavior in composites; however, the one-dimensional shear-lag model
cannot provide this stress state. Three-dimensional analytical models have been developed based
on quite different approaches and aim mostly at the interfacial problems. It has been noted that
most of the three-dimensional analytical models usually satisfy the equilibrium states and most of
the boundary and interfacial conditions. This is because the solutions are generally based on the
stress equilibrium equations; but the compatibility conditions are only partly or approximately
satisfied because of different degrees of applied approximations and simplifications. Therefore,
since the excessive complicated mathematical derivations are involved, very limited efforts could
be observed for the exact solution of such problems in the literature. One of the most precise
and relatively simple three-dimensional analytical solutions was done by Jiang et al. (2004). In
this model, two sets of exact displacement solutions for the matrix, i.e. the far-field solution and
the transient solution, were derived. Afterwards, the theory of elasticity and superposition of the
simplified analytical expressions were used to find all the stress components in the matrix and
fibre. It is worth mentioning that the fibre end region could be also included using the imaginary
fibre technique. Jiang’s analytical model was modified and developed by Abedian et al. (2007).
The latter was greatly improved and could predict capability of the composite behavior. In brief,
for Jiang’s and Abedian’s models, the following assumptions were made: a perfect bond existed
at the fibre-matrix interface and both fibre and matrix were isotropic.

Most authors have made emphasis on platelets as reinforcement instead of fibers because
of their two-dimensional stiffening effects (Chou and Green, 1993; Piggott, 1980; Salekin et al.,
1992) and cost factor. The two-dimensional stress transfer model of platelet reinforced composites
was presented by Tyson and Davis (1965), which was derived following the same analysis as
applied in the classical shear-lag model by Cox (1952). Later, Hsueh (1994, 1999, 2000) proposed
a more rigorous two-dimensional stress transfer model for platelet reinforcement while assuming
that the shear stress in the matrix decreased linearly from the interface between the platelet
and matrix to the edges. Also, the effects of matrix bonding at the ends, Young’s modulus,
and the aspect ratio of the platelet were investigated on stress transfer. A simple second order
model and a more complicated fourth order model were developed for simulating stress transfer
in overlapped platelets by Kotha et al. (2000). Some other models based on shear-lag theory
were presented by Narin (1999, 2001, 2004).

The present study tried to derive such an analytical 3D modeling of platelet reinforced
composites which were presented according to Jiang’s and Abedian’s methods and boundary
conditions. While considering the typical complexity of stress field distribution in platelet rein-
forced composites, the analysis aimed at a platelet reinforced composite subjected to an applied
axial load. Two sets of matrix/platelet displacement solutions, the far-field solution and the
transient solution were precisely derived based on the theory of elasticity and were superposed
to achieve simplified analytical expressions for the matrix/platelet stress field components and
the platelet axial stress field components in the entire composite system, which included the pla-
telet end region, using the technique of adding the imaginary fibre. The finite element numerical
calculations were then conducted to examine the validity of this analytical model. At last, some
concluding remarks were presented on the present analytical model. Both bonded and debonded
platelet end cases were introduced in this research.

2. Analyses

2.1. Composite model

In the current study, a rectangular unit cell (as shown in Fig. 1) was used for modeling platelet
reinforced composites. The platelet with the width of 2a and length of 2l was embedded in the
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center of a matrix with the width of 2b and length of 2l′. The area fraction and aspect ratio
of the platelet were defined as follows f = a/b and s = l/a, respectively. The axial stress (σ0)
was considered to be uniformly applied to the end faces of the unit cell. A Cartesian coordinate
system (x, y) was also applied with its origin located in the centre of the unit cell, as given in
Fig. 1. For simplicity, a perfect bond was assumed at the platelet/matrix interface and isotropic
constituents for the composite. Due to the symmetric geometry in the x-y plane and boundary
conditions, only one quarter of the unit cell was considered in the analysis. In this work, the
solutions were performed in two separate areas: in the platelet region (0 ¬ y ¬ l) and the platelet
end region (l ¬ y ¬ l′). They were undertaken using the imaginary fibre technique (Abedian et
al., 2007; Jiang et al., 2004), which assumed that the platelet end region was composed of an
imaginary platelet surrounded with a rectangular matrix while the properties of the imaginary
platelet were considered the same as those of the matrix.

Fig. 1. Schematic illustrations of the unit cell

2.2. General solutions of matrix and platelet displacements

The equilibrium equations for plane stresses (Timoshenko and Goodier, 1951) are as follows

∂σx
∂x
+
∂τxy
∂y
= 0

∂σy
∂y
+
∂τxy
∂x
= 0 (2.1)

which lead to the equations

2

1 + ν

∂2u

∂x2
+
1− ν

1 + ν

∂2u

∂y2
+
∂2w

∂x∂y
= 0

1− ν

1 + ν

∂2w

∂x2
+
2

1 + ν

∂2w

∂y2
+
∂2u

∂x∂y
= 0 (2.2)

where u is the displacement in the x-direction, and w is the displacement in the y-direction,
E s Young’s modulus and ν is Poisson’s ratio. By simple algebraic manipulation of the operators
in Eqs. (2.1) and (2.2), the governing equations of w and u can be derived. The equation with
respect to u could be found in the following manner

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
= 0 (2.3)

The method of separation variables verifies the last equation and results in different answers.
For the case of this reserach, the Laplace equation could be obtained according to the condi-
tions (see Appendix A). Thus, the following general solution can be found for the x-direction
displacement

um(T )(x, y) = (A1 sinnx+A2 cosnx)(A3 sinhny +A4 coshny) (2.4)
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where Ai (i = 1 − 4) is an integral constant and n is a constant related to the eigenvalue.
By substituting Eq. (2.4) into Eq. (2.1) or Eq. (2.2), the general solution for the y-direction
displacement (w) can be derived as follows

wm(T )(x, y) = (−A1 cosnx+A2 sinnx)(A3 cosh ny +A4 sinhny) (2.5)

Another set of the displacement general solutions for zero-eigenvalue were derived as demon-
strated below (see Appendix A)

um(0)(x, y) = B1 +B2x wm(0)(x, y) = B3 +B4y (2.6)

where Bj (j = 1, . . . , 4) is the integral constant. The above displacement solutions could be
superimposed to write the total value of displacement components in the matrix as follows

um = um(0) + um(T ) wm = wm(0) + wm(T ) (2.7)

The general solutions for the x- and y-directions displacements in the platelet could be
found in Eqs. (2.8)-(2.10). It should be noted that, due to the continuity condition, A3and A4
were considered the same as those for the matrix expressions. But new boundary conditions
were required for successful application in these equations, as presented in the next section. The
details of derivation of the coefficients by the proposed boundary conditions will be also given
in this investigation

up(T )(x, y) = (A5 sinnx+A6 cosnx)(A3 sinhny +A4 coshny)

wp(T )(x, y) = (−A5 cosnx+A6 sinnx)(A3 cosh ny +A4 sinhny)
(2.8)

and

up(0)(x, y) = B5 +B6x wp(0)(x, y) = B7 +B8y (2.9)

and

up = up(0) + up(T ) wp = wp(0) + wp(T ) (2.10)

Thus, the general solutions for the stress and strain components which correspond to the
above two sets of displacement solutions were obtained using Hook’s law (see Appendix B).
Therefore, the stress field described by displacement Eqs. (2.6) and (2.9) was identical to the one
in a composite with infinitely long platelets which were subjected to a far-field load corresponding
to the uniform portion of the total stress. However, the stress field described by Eqs. (2.4),
(2.5), and (2.8) corresponded to the non-uniform portion of the total stress field since all the
components of the stress field depended on both x- and y-directions.

3. Solution for platelet

3.1. Far-field solution

The surface conditions for the far-field solution in the platelet region for the platelet bonded
end case could be presented by

τm(0)xy (b, y) = 0 wm(0)(x, 0) = 0 up(0)(0, y) = 0 (3.1)

The above conditions and ε
m(0)
yy = ε0 can be used for deriving the following constants

B3 = B5 = 0 B4 = ε0 (3.2)
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where ε0 is the far-field strain. Using Eq. (B.7), other constants could be found as demonstrated
below

B8 = ε0 (3.3)

Using um(0)(a, y) = up(0)(a, y), the B1 coefficient can be obtained as follows

B1 = (B6 −B2)a (3.4)

Equation (B.8) and the equation of the equilibrium, i.e. Eq. (3.5)1, lead to obtaining B2 and
B6 as in Eqs. (3.5)2,3

σ0 = fσ
p(0)
yy + (1− f)σ

m(0)
yy B2 = p21σ0 + p22ε0 B6 = p61σ0 + p62ε0 (3.5)

Also, p21, p22, p61 and p62 were found in Matlab software. Due to being so lengthy, they were
not cited in this paper.
Then, the stresses in the imaginary platelet region (l ¬ y ¬ l′) were calculated. Similarly,

the far-field solution and all the corresponding expressions of the general solution for the stress
and strain components of this region could be obtained directly from those of the platelet region
by considering Ep = Em and νp = νm. Using the same derivation procedures as the ones in the
platelet region, the integral constants in this region were obtained

B̃1 = B̃5 = 0 B̃4 = B̃8 = ε̃0

B̃3 = B̃7 = (ε0 − ε̃0)l B̃2 = B̃6 =
(1− ν2m)σ0 − Emε̃0

νmEm

(3.6)

To calculate the far-field strains ε0 and ε̃0, the following two boundary conditions could be used

um(0)(b, y) = ũm(0)(b, y)
l

l′
[fEp + (1− f)Em]ε0 +

(
1−
l

l′

)
Emε̃0 = σ0 (3.7)

Here, Matlab software was used to find ε0 and ε̃0 strains. Because of being lengthy, they were
not cited in this paper. Equation (3.7)2 can be obtained from the boundary conditions and some
simplifications which lead to having l and l′ inside the strain equations, equilibrium equations

l

l′
σ0 +

(
1−
l

l′

)
σ0 = σ0 σ0 = fσ

p(0)
yy + (1− f)σ

m(0)
yy

σ0 = fσ̃
p(0)
yy + (1− f)σ̃

m(0)
yy σ

m(0)
yy = Emε0

σ
p(0)
yy = Epε0 σ̃

m(0)
yy = σ̃

p(0)
yy = Emε̃0

(3.8)

Finally, by substituting ε0 and ε̃0 and the above-obtained constants in the stress equations,
the expressions for the far-field solutions in the two mentioned regions can be found as a function
of σ0.

3.2. Transient solution

In this part, the transient solution in the platelet region (0 ¬ y ¬ l) will be first determined.
The surface boundary conditions for the transient solution can be presented by

wm(T )(x, 0) = 0 um(T )(b, y) = 0 (3.9)

It is implied by these conditions that the transient solution did not alter the shape of the
unit cell. Substituting the above conditions in the stress, the strain and displacement expressions
resulted in

A3 = 0 A2 = −A1 tannb (3.10)
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To determine two other coefficients, the following boundary conditions were used

up(T )(0, y) = 0 σm(T )xx (a, y) = σ
p(T )
xx (a, y) (3.11)

Then, A5 and A6 were derived

A6 = 0 A5 =
Em
Ep

1 + νp
1 + νm

(A1 −A2 tanna) (3.12)

To find the unknown n, axial force equilibrium Eq. (3.13) was used. Matlab software was used
for finding the optimum n

fσp(T )yy + (1− f)σ
m(T )
yy = 0 (3.13)

Afterwards, the transient solution was specified in the platelet end region (l ¬ y ¬ l′). The
transient solution and all the corresponding expressions for the general solution of the stress and
strain components in this region could be directly obtained from those of the platelet region by
considering Ep = Em and νp = νm. Using the same derivation procedure and corresponding
boundary conditions as the ones in the platelet region, the corresponding constants were achieved
as follows

τ̃m(T )xy (b, y) = 0 w̃m(T )(a, y) = w̃p(T )(a, y) σ̃m(T )xx (a, y) = σ̃
p(T )
xx (a, y) (3.14)

Also, the following constants were obtained

Ã6 = 0 Ã5 = Ã1 − Ã2 tan ña Ã2 = −Ã1 tan ñb (3.15)

To find the unknown ñ, equilibrium Eq. (3.16) was used, similar to the real platelet field

fσ̃
p(T )
yy + (1− f)σ̃

m(T )
yy = 0 (3.16)

Using the following surface condition, Eq. (3.17)1, Ã3 coefficient was also derived

τ̃mxy(x, l
′) = τ̃pxy(x, l

′) = 0 Ã3 = −Ã4
sinh ñl′

cosh ñl′
(3.17)

Finally, A4 and Ã4 coefficients were found using the following boundary conditions

σpyy(x, l) = σ̃
p

yy(x, l) τmxy(a, y) = τ̃
m
xy(a, y) (3.18)

4. Analytical and numerical predictions

To monitor the validity of the current analytical model, a comparison was made with the FEM
calculations by ANSYS software. The schematic FEM model is also demonstrated in Fig. 1.
The numerical calculations were performed on one quarter of the unit cell due to the existing
symmetric boundary conditions. Eight nodded PLANE82 solid elements were applied for the
purpose of meshing. Loading in ANSYS was via pressure applied to the element boundary line.
All the simulations were performed under the plane stress condition. The boundary conditions
required fixing both the x-displacement at x = 0 and the y-displacement at y = 0. The loading
was applied to y = l′. Only typical results were presented for b/a = 1.75, l/a = 5 and l/l′ = 0.5
(platelet volume fraction was almost 0.285) in order to decrease the number of figures. The
material properties were selected as Em = 63GPa, Ep = 402GPa, νm = 0.22 and νp = 0.23
(Cannilloa et al., 2003). The applied stress was taken as σ0 = 200MPa.
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Fig. 2. Comparison and validation of the present model with Hsueh’s model and numerical results

Figure 2 demonstrates the comparison and validation of the present model with the Hsueh
model and its numerical results. Compared with Hsueh’s results, the current model and FEM
values of the stress components for the case of perfect bond were found to be in a good agreement.

To demonstrate the capabilities of the present model, displacements, strains, stresses in
the matrix and platelet were given in the x- and y-directions. It is worth considering that
only typical results were presented in order to reduce the number of figures. The analytical
and numerical curves of the normalized matrix in displacements in the x- and y-directions on
the outer surface of the unit cell and the platelet/matrix interface versus the normalized axial
position are demonstrated in Fig. 3. As can be observed, considerable agreements were obtained
between the analytical and numerical predictions. Figure 4 depicts the analytical and numerical
curves of the shear stress and x-direction stresses on the outer surface of the unit cell (x = b)
and the platelet-matrix interface versus the normalized axial position y/a.

Fig. 3. Analytical and numerical curves of the matrix displacements vs. the normalized axial position

Fig. 4. Analytical and numerical curves of the matrix stress vs. the normalized axial position
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The given comparisons confirmed considerable strong prediction ability of the analytical
solution for the elastic field distribution in such a complicated system. There are some small
inconsistencies in singular behavior on the platelet end plane between the analytical and nume-
rical solutions, which can be probably attributed to the limited prediction ability of the finite
element numerical method for the stress singularity. These calculations also demonstrated that
the same consistent predictions could be achieved for all the strain components and over a great
range of material properties and geometries, which were not included here.

5. Conclusions

An analytical model was developed for the analysis of the 3D elastic stress field in a platelet
reinforced composite subjected to an axial load. The present stress field solution involved two
regions, i.e. the matrix region surrounding the platelet and the platelet region. The derived ana-
lytical expressions for the matrix and platelet stress fields precisely satisfied both equilibrium
and compatibility conditions of the theory of elasticity. Furthermore, since the interface con-
tinuity conditions and axial force equilibrium conditions were taken into account, the overall
equilibrium was ensured rigorously within the platelet, matrix and between the platelet and the
matrix.
Apart from the investigations based on the shear-lag theory, the stress transfer from the

matrix to the platelet was obtained through the interface continuity conditions and the axial force
equilibrium conditions. Furthermore, this model of the platelet reinforced composite presented
all stress, strain and displacement components in the matrix and platelet; in contrast, shear-lag
model only could predict the y-direction average stress in the platelet and the interface shear
stress.
Because the number of boundary conditions, equilibrium and compatibility conditions was

more than the number of unknown coefficients (Aj , Bj, n, ñ), optimization methods were used
for finding the best answers.

A. Solution for matrix displacements

∂2u

∂x2
+
∂2u

∂y2
= 0 (A.1)

Using the method of separation of variables for writting u(x, y) as

u(x, y) = Y (y)X(x) (A.2)

substitution of u(x, y) into Eq. (A.1) leads to

∂2X

∂x2
+ nX = 0

∂2Y

∂x2
− nY = 0 (A.3)

Then, the following can be given

X = A1 sinnx+A2 cosnx Y = A3 sinhny +A4 coshny (A.4)

So

um(T )(x, y) = (A1 sinnx+A2 cosnx)(A3 sinhny +A4 coshny) (A.5)

For the far-field case n = 0, then

Xm(0) = B1 +B2x Y m(0) = C1 + C2y (A.6)
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So

um(0)(x, y) = (B1 +B2x)(C1 + C2y) (A.7)

where B1, B2, C1 and C2 are constants. The boundary conditions can be used with some
simplifications, which results in

um(0)(x, y) = B1 +B2x (A.8)

Substitution of elements of Eqs. (A.5), (A.8) into Eq. (2.1) leads to

wm(T )(x, y) = (−A1 cosnx+A2 sinnx)(A3 cosh ny +A4 sinhny)

wm(0)(x, y) = B3 +B4y
(A.9)

B. Boundary conditions

um(b, y) = ũm(b, y) τmxy(b, y) = τ̃
m
xy(b, y) = 0

wm(x, 0) = wp(x, 0) = 0 τmxy(x, 0) = τ
p
xy(x, 0) = 0

w̃m(x, l′) = w̃p(x, l′) τ̃mxy(x, l
′) = τ̃pxy(x, l

′) = 0

(B.1)

The interface continuity conditions on the platelet-matrix interface (x = a)

εm(a, y) = εp(a, y) σmxx(a, y) = σ
p
xx(a, y)

ε̃m(a, y) = ε̃p(a, y) σ̃mxx(a, y) = σ̃
p
xx(a, y)

(B.2)

The continuity conditions on the platelet end surface (x = l)

σmyy(x, l) = σ̃
m

yy(x, l) σpyy(x, l) = σ̃
p

yy(x, l)

τmyy(x, l) = τ̃
m
yy(x, l) wm(x, l) = w̃m(x, l)

(B.3)

C. General solutions for the stress and strain components

According to the theory of elasticity, the elastic constituent relations could be written as follows

τxy = τyx =
E

2(1 − ν)
γxy σxx =

E

1− ν2
(εxx + νεyy)

σyy =
E

1− ν2
(νεxx + εyy) εxx =

∂u

∂x

εyy =
∂w

∂y
γxy = γyx =

∂u

∂y
+
∂w

∂x

(C.1)

where σ, ε, τ and γ are the normal stress and strain and the shear stress and strain, respectively.
The following equations present the far-field solution of the matrix. Note that, for the end fiber
region; i.e. l ¬ y ¬ l′, all the coefficients should have the tilde

σ
m(0)
xx (x, y) =

Em
1− ν2m

(B2 + νmB4) σ
m(0)
yy (x, y) =

Em
1− ν2m

(νmB2 +B4)

τ
m(0)
xy (x, y) = 0 ε

m(0)
xx (x, y) = B2

ε
m(0)
yy (x, y) = B4 γ

m(0)
xy (x, y) = γ

m(0)
yx = 0

(C.2)
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The far-field solution for the fiber and imaginary fiber regions will be shown as follows. It is
worth considering that, for the imaginary fiber, Ep and νp should be converted to Em and νm,
and all the coefficients should have the tilde

σ
p(0)
xx (x, y) =

Ep
1− ν2p

(B6 + νpB8) σ
p(0)
y (x, y) =

Ep
1− ν2p

(B8 + νpB6)

τ
p(0)
xy (x, y) = 0 ε

p(0)
xx (x, y) = B6

ε
p(0)
yy (x, y) = B8 γ

p(0)
xy (x, y) = γ

p(0)
yx (x, y) = 0

(C.3)

The transient solution of the matrix is given below. For the end platelet region; i.e. l ¬ y ¬ l′,
all the coefficients should have the tilde

σm(T )xx (x, y) =
nEm
1 + νm

(A1 cosnx−A2 sinnx)(A3 sinhny +A4 coshny)

σm(T )yy (x, y) =
nEm
1 + νm

(−A1 cosnx+A2 sinnx)(A3 sinhny +A4 coshny)

τm(T )xy (x, y) =
nEm
1 + νm

(A1 sinnx+A2 cosnx)(A3 coshny +A4 sinhny)

εm(T )xx (x, y) = n(A1 cosnx−A2 sinnx)(A3 sinhny +A4 coshny)

εm(T )yy (x, y) = n(−A1 cosnx+A2 sinnx)(A3 sinhny +A4 cosh ny)

γm(T )xy (x, y) = 2n(A1 sinnx+A2 cosnx)(A3 cosh ny +A4 sinhny)

(C.4)

For the transient solution of the platelet and imaginary platelet, one may reach the following
equations. For the imaginary platelet, the Ep and νp should be converted to Em and νm, and
all the coefficients should have the tilde

σp(T )xx (x, y) =
nEp
1 + νp

(A5 cosnx−A6 sinnx)(A3 sinhny +A4 coshny)

σp(T )yy (x, y) =
nEp
1 + νp

(−A5 cosnx+A6 sinnx)(A3 sinhny +A4 coshny)

τp(T )xy (x, y) =
nEp
1 + νp

(A5 sinnx+A6 cosnx)(A3 cosh ny +A4 sinhny)

εp(T )xx (x, y) = n(A5 cosnx−A6 sinnx)(A3 sinhny +A4 coshny)

εp(T )yy (x, y) = n(−A5 cosnx+A6 sinnx)(A3 sinhny +A4 cosh ny)

γp(T )xy (x, y) = 2n(A5 sinnx+A6 cosnx)(A3 cosh ny +A4 sinhny)

(C.5)
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